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Every computer has a power budget

device simple phone |smartphone tablet laptop supercomputer
total power 3W 5W |5W 35W 20 megawatts
budget

screen size 3" 4-5” 10” 13”

* Power limited by heat generated

* Performance increases over time, but power budget does not

= Active research area: how to get more performance within a power budget
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Low Latency is Low Energy

Power

Energy

= Energy = Power * Time Time
= Datapaths consume little power on out-of-order cores

* Current ARM FPUs consume about 7% of “big” core power running DAXPY
" Decreasing latency can decrease time
" Energy savings is not just datapath energy
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Typical 5-cycle FMA

= all 3 operands needed at the beginning of the operation

= sum of 4 products: s = a*x + b*y + c*z + d*w

1 12 |3 |4 |5 |6 10 (11 {12 |13 |14 (15 |16 |17 |18 [19 |20
fmuls,ax (M M M (M M
fma s,b,y F F
fma s,c,z F IF |IF |IF |F
fma s,d,w F IF IF |IF IF
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ARM 6-cycle FMA with separate multiply and add

= 3-cycle multiply followed by 3-cycle add
" Note that a single FMA is slower

= sum of 4 products: s = a*x + b*y + ¢*z + d*w

1 2 |3 |4 |5 |6 |7 |8 |9 (10 |11 |12 |13
fmul s,a,x M1 M2 M3
fma s,by M1 (M2 M3 |A1 |A2 |A3
fma s,c,z M1 (M2 M3 |A1 |A2 |A3
fma s,d,w M1 (M2 (M3 |[A1 |A2 [A3
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3-cycle multiplier
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3-cycle adder
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Faster FPU = higher performance and lower energy

= Suppose lower latency FPU is 15% faster than higher latency FPU
= Takes I/1.15 = .87 of the time to complete SpecFP

time FP power |non-FP power |energy = time * power
Slower FPU I 7 93 1.0 * (7+93) = 100
Faster FPU 0.87 P 93 .87 * (p+93) = .87p + 80.9

" New scheme lower energy if 100 > .87p + 80.9
= if p <22
= if p < 3 times slower FPU power
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Faster FPU can lead to lower area

= Fewer (flip)flops vs. more logic
* Where is the area going!?




Strategy for out-of-order cores

" Do the execution as quickly as possible to save energy
= Be suspicious of slower execution, e.g.

" double pumped multipliers

= slower dividers
= Execution units are where you want to spend power
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Conclusions

" Low execution latency has an outsized effect on performance
" Low latency can improve area
* Low latency is low energy
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