ARM FPUs: Low Latency is Low Energy

David Lutz

Every computer has a power budget

device	simple phone	smartphone	tablet	laptop	supercomputer
total power budget	3W	5W	15W	35W	20 megawatts
screen size	3"	4-5"	10"	13"	

- Power limited by heat generated
- Performance increases over time, but power budget does not
- Active research area: how to get more performance within a power budget

Low Latency is Low Energy

- Energy = Power * Time
- Datapaths consume little power on out-of-order cores
 - Current ARM FPUs consume about 7% of "big" core power running DAXPY
- Decreasing latency can decrease time
- Energy savings is not just datapath energy

Typical 5-cycle FMA

- all 3 operands needed at the beginning of the operation
- sum of 4 products: $s = a^*x + b^*y + c^*z + d^*w$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
fmul s,a,x	М	М	М	М	М															
fma s,b,y						F	F	F	F	F										
fma s,c,z											F	F	F	F	F					
fma s,d,w																F	F	F	F	F

ARM 6-cycle FMA with separate multiply and add

- 3-cycle multiply followed by 3-cycle add
- Note that a single FMA is slower
- sum of 4 products: $s = a^*x + b^*y + c^*z + d^*w$

	1	2	3	4	5	6	7	8	9	10	11	12	13
fmul s,a,x	M1	M2	M3										
fma s,b,y		M1	M2	M3	A1	A2	A3						
fma s,c,z					M1	M2	M3	A1	A2	A3			
fma s,d,w								M1	M2	M3	A1	A2	A3

3-cycle multiplier

- VI
- normalization
- Booth encoding
- V2
 - Booth mux
 - 18:2 reduction
 - compute shift,round,mask
- V3
 - add and round (2)
 - subnormal shift
 - select

3-cycle adder

- VI
 - compare/swap
 - 4xLZA
 - compute exponent
 - compute Ishift, rshift
- V2
 - Left and right shift
 - select
 - 3:2 for rounding
- V3
 - add and round
 - select

Faster FPU = higher performance and lower energy

- Suppose lower latency FPU is 15% faster than higher latency FPU
- Takes I/I.15 = .87 of the time to complete SpecFP

	time	FP power	non-FP power	energy = time * power
Slower FPU	I	7	93	1.0 * (7+93) = 100
Faster FPU	0.87	Р	93	.87 * (p+93) = .87p + 80.9

- New scheme lower energy if 100 > .87p + 80.9
 - if p < 22
 - if p < 3 times slower FPU power

Faster FPU can lead to lower area

- Fewer (flip)flops vs. more logic
- Where is the area going?

Strategy for out-of-order cores

- Do the execution as quickly as possible to save energy
- Be suspicious of slower execution, e.g.
 - double pumped multipliers
 - slower dividers
- Execution units are where you want to spend power

Conclusions

- Low execution latency has an outsized effect on performance
- Low latency can improve area
- Low latency is low energy

