ARM FPUs: Low Latency is Low Energy

David Lutz

| I'he Architecture for the Digital World® ARM

Every computer has a power budget

device simple phone |smartphone tablet laptop supercomputer
total power 3W 5W |5W 35W 20 megawatts
budget

screen size 3" 4-5” 10” 13”

* Power limited by heat generated

* Performance increases over time, but power budget does not

= Active research area: how to get more performance within a power budget

ARM

Low Latency is Low Energy

Power

Energy

= Energy = Power * Time Time
= Datapaths consume little power on out-of-order cores

* Current ARM FPUs consume about 7% of “big” core power running DAXPY
" Decreasing latency can decrease time
" Energy savings is not just datapath energy

3 ARM

Typical 5-cycle FMA

= all 3 operands needed at the beginning of the operation

= sum of 4 products: s = a*x + b*y + c*z + d*w

1 12 |3 |4 |5 |6 10 (11 {12 |13 |14 (15 |16 |17 |18 [19 |20
fmuls,ax (M M M (M M
fma s,b,y F F
fma s,c,z F IF |IF |IF |F
fma s,d,w F IF IF |IF IF

ARM

ARM 6-cycle FMA with separate multiply and add

= 3-cycle multiply followed by 3-cycle add
" Note that a single FMA is slower

= sum of 4 products: s = a*x + b*y + ¢*z + d*w

1 2 |3 |4 |5 |6 |7 |8 |9 (10 |11 |12 |13
fmul s,a,x M1 M2 M3
fma s,by M1 (M2 M3 |A1 |A2 |A3
fma s,c,z M1 (M2 M3 |A1 |A2 |A3
fma s,d,w M1 (M2 (M3 |[A1 |A2 [A3

ARM

3-cycle multiplier

= VI

= V2

normalization
Booth encoding

Booth mux
18:2 reduction
compute shift,round,mask

add and round (2)
subnormal shift
select

——————— > opa[63:0]

VA

V2

V3

—————————————— > opb[63:0] -—----

| CLZ siga |

s |

| 0-63 bit left shift 0-63 bit left shift

L 0-63 bit left shift

[
| radix 8 Booth encoder
[

>normalized siga |-{>normalized 3x siga |-{> BM[17:0] }----

Booth 8 mux computed exponent
| shift, round,
18->12->8->6->4->3->2 (3:2 compressors) and mask
generation

| -

D[105:0]

E[105:0] |- {ovfl round [--) round {-pmask |--) shift |---

3:2

ovfl sum

NQ:63 bit right shift |

last bit and flags last bit and flags

|
3:2
; sum[105:0] ;

.63 bit right shift |

S0 bt right shit

sign,ovil exp |

rounded ovfl sum

sign,exp

rounded sum

specials
sum[105], special

S ARM

3-cycle adder

= VI

compare/swap
4xLZA

compute exponent
compute Ishift, rshift

Left and right shift

select

3:2 for rounding

add and round

select

VA

V2

V3

T |2> opa sources[63:0]

opa_mux

opb_mux

comparison

|: LZAs/exp
compares

DEEY

Mﬁ larger,shift1 anl anc
opl,ops

_____ Ishift[6:0]

|
T |2>opb sources[116:0] |

|: left shift

N 31 yA

round1 |

2FA

| round0

3:2FA

i

---c1[107:0]

i

s1[107:0]

@
I

specials]

41 7 _overflow, overflow2
| special

>

sum[63:0]

SRREEE c0[107:0] $>s0[107:0] -~

] rshift1
-------------- opl[106:0] -+>ops[106:0] {---
I
left shift right shift [—exp_diff
N Is,rs,subnormal

ARM

Faster FPU = higher performance and lower energy

= Suppose lower latency FPU is 15% faster than higher latency FPU
= Takes I/1.15 = .87 of the time to complete SpecFP

time FP power |non-FP power |energy = time * power
Slower FPU I 7 93 1.0 * (7+93) = 100
Faster FPU 0.87 P 93 .87 * (p+93) = .87p + 80.9

" New scheme lower energy if 100 > .87p + 80.9
= if p <22
= if p < 3 times slower FPU power

ARM

Faster FPU can lead to lower area

= Fewer (flip)flops vs. more logic
* Where is the area going!?

Strategy for out-of-order cores

" Do the execution as quickly as possible to save energy
= Be suspicious of slower execution, e.g.

" double pumped multipliers

= slower dividers
= Execution units are where you want to spend power

|10

ARM

Conclusions

" Low execution latency has an outsized effect on performance
" Low latency can improve area
* Low latency is low energy

1 ARM

